Jiancang Zhuang is a Ph.D. in Statistics and an M.S. in Geophysics. He is currently a Professor at the Institute of Statistical Mathematics (ISM), Research Organization of Information and Systems (ROIS), Japan. He also serves as a visiting professor/researcher at several institutions, including the London Mathematical Laboratory (UK), the Institute of Geophysics, China Earthquake Administration, and the Institute for Risk Analysis, Prediction and Management at Southern University of Science and Technology (China). His research spans statistical seismology, spatiotemporal point-process modeling, earthquake forecasting, statistical data science, machine learning, and Bayesian inference. To date, he has published more than 160 papers in international journals across statistics, geophysics, and physics. He also serves on the editorial boards of several international journals.

On magnitude dependence in earthquake clustering

(Jiancang Zhuang, Giuseppe Petrillo, Chengxiang Zhan, Stephen Wu)

Abstract

Whether successive earthquake magnitudes are correlated—a putative magnitude dependence within clustered seismicity—remains a fundamental question with direct implications for forecasting frameworks such as ETAS. Addressing this, we deploy two complementary tests. First, we perform stochastic declustering under the ETAS model to reconstruct parent—offspring relationships and restrict inference to events above the magnitude of completeness. Second, we introduce an information-theoretic neural approach: a history-dependent modulated neural network (MNN) contrasted with a history-independent NN, and evaluate per-event information gain (PEIG); positive log-likelihood gains would indicate predictive value from past magnitudes.

Across both stochastic-declustering and neural network tests, we find no statistically significant evidence of magnitude dependence in clustered seismicity once catalog incompleteness is controlled, suggesting that forecast models need not assume such dependence.