Constraints on the composition and temperature of LLSVPs from seismic properties of lower mantle minerals

Kenny Vilellaa,b,*, Thomas Bodinc, Charles-Edouard Boukaréd, Frédéric Deschampsb, James Badroe, Maxim Ballmerf, Yang Lig

aJSPS International Research Fellow, Hokkaido University, Japan
bInstitute of Earth Sciences, Academia Sinica, Taipei, Taiwan
cLaboratoire de Géologie de Lyon, UMR 5276, Université de Lyon, Villeurbanne, France
dEarth and Planetary Science Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
eInstitut de Physique du Globe, Univ. Paris Diderot, Sorbonne Paris Cité, CNRS, Paris, France
fInstitute of Geophysics, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
gKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Science, Beijing, China

\begin{center}
\textbf{Determination of the iron concentration}
\end{center}

The definition of the Fe-Mg exchange coefficient between bridgmanite (Bm) and ferropericlase (Fp) gives that

$$K^{\text{Bm-Fp}} = \left(\frac{\text{Fe}}{\text{Mg}} \right)_{\text{Bm}} \left(\frac{\text{Fe}}{\text{Mg}} \right)_{\text{Fp}} = \frac{x_{\text{Fe},\text{Bm}}}{x_{\text{Mg},\text{Fp}}} = \frac{x_{\text{Mg},\text{Bm}}}{x_{\text{Fe},\text{Fp}}}, \quad (1)$$

where $x_{\text{Fe},\text{Bm}}$, $x_{\text{Mg},\text{Bm}}$, $x_{\text{Fe},\text{Fp}}$, $x_{\text{Mg},\text{Fp}}$ are the molar concentrations of MgO or FeO in Fp or Bm. Note that $x_{\text{Mg},\text{Fp}} = 1 - x_{\text{Fe},\text{Fp}}$ and that for the sake of simplicity we will write simply x_{Fp} and x_{Bm} instead of $x_{\text{Fe},\text{Fp}}$ and $x_{\text{Fe},\text{Bm}}$, respectively. Moreover,

$$x_{\text{Mg},\text{Bm}} = 0.5x_{\text{MgSiO}_3}, \quad (2)$$

*Corresponding author

\textit{Email address:} kennyvilella@gmail.com (Kenny Vilella)
where the factor 0.5 indicates that x_{MgSiO_3} (the molar concentration of MgSiO$_3$ in Bm) is composed of both MgO and SiO$_2$. Considering the components in Bm, we can write that

$$x_{\text{MgSiO}_3} = 1 - x_{\text{FeSiO}_3} - x_{\text{FeAlO}_3} - x_{\text{Al}_2\text{O}_3} - x_{\text{Fe}_2\text{O}_3}$$ \hspace{1cm} (3)

$$= 1 - (2 - R_{\text{Fe}})x_{\text{Bm}} - x_{\text{Al}}$$ \hspace{1cm} (4)

with x_{Al} the molar concentration of AlO$_2$ in Bm, $R_{\text{Fe}} = \text{Fe}^{3+}/\sum \text{Fe}$, and x_{FeSiO_3}, x_{FeAlO_3}, $x_{\text{Al}_2\text{O}_3}$, $x_{\text{Fe}_2\text{O}_3}$, the molar concentration in Bm of FeSiO$_3$, FeAlO$_3$, Al$_2$O$_3$ and Fe$_2$O$_3$, respectively. Note that in case of alumina excess,

$$x_{\text{FeSiO}_3} = 2(1 - R_{\text{Fe}})x_{\text{Bm}}$$ \hspace{1cm} (5)

$$x_{\text{FeAlO}_3} = 2 R_{\text{Fe}}x_{\text{Bm}}$$ \hspace{1cm} (6)

$$x_{\text{Al}_2\text{O}_3} = x_{\text{Al}} - R_{\text{Fe}}x_{\text{Bm}}$$ \hspace{1cm} (7)

$$x_{\text{Fe}_2\text{O}_3} = 0$$ \hspace{1cm} (8)

while in case of iron excess,

$$x_{\text{FeSiO}_3} = 2(1 - R_{\text{Fe}})x_{\text{Bm}}$$ \hspace{1cm} (9)

$$x_{\text{FeAlO}_3} = 2 x_{\text{Al}}$$ \hspace{1cm} (10)

$$x_{\text{Al}_2\text{O}_3} = 0$$ \hspace{1cm} (11)

$$x_{\text{Fe}_2\text{O}_3} = R_{\text{Fe}}x_{\text{Bm}} - x_{\text{Al}}.$$ \hspace{1cm} (12)

Eq. 1 gives therefore a relationship between x_{Bm}, x_{Fp} and x_{Al}, since R_{Fe} and $K_{\text{Bm-Fp}}$ are input parameters. A second relationship is obtained considering another input parameter, $P_{\text{Al}_2\text{O}_3}$, the amount of Al$_2O_3$ in the composition (wt%). Indeed,

$$P_{\text{Al}_2\text{O}_3} = \frac{M_{\text{Al}_2\text{O}_3}}{M_{\text{Bm}}} X_{\text{m,Bm}} x_{\text{Al}},$$ \hspace{1cm} (13)

with $M_{\text{Al}_2\text{O}_3}$ the molar mass of Al$_2$O$_3$, which can be easily calculated, M_{Bm} the molar mass of Bm, $X_{\text{m,Bm}}$ the mass fraction of Bm. The molar mass of Bm is
a function of \(x_{\text{Al}} \) and \(x_{\text{Bm}} \).

\[
M_{\text{Bm}} = x_{\text{MgSiO}_3}M_{\text{MgSiO}_3} + x_{\text{FeSiO}_3}M_{\text{FeSiO}_3} + x_{\text{FeAlO}_3}M_{\text{FeAlO}_3} + x_{\text{Al}_2\text{O}_3}M_{\text{Al}_2\text{O}_3} + x_{\text{Fe}_2\text{O}_3}M_{\text{Fe}_2\text{O}_3},
\]

(14)

where \(M_{\text{MgSiO}_3} \), \(M_{\text{FeSiO}_3} \), \(M_{\text{FeAlO}_3} \), and \(M_{\text{Fe}_2\text{O}_3} \) are the molar mass of MgSiO\(_3\), FeSiO\(_3\), FeAlO\(_3\), and Fe\(_2\)O\(_3\), respectively. In our approach, we assume that the volume proportion of minerals is constant with depth, to obtain the mass proportion \(X_{m,\text{Bm}} \) we can thus use,

\[
X_{m,\text{Bm}} = \frac{1}{1 + \frac{X_{\text{vol, CaPv}}}{X_{\text{vol, Bm}}} \frac{\rho_{\text{CaPv}}}{\rho_{\text{Bm}}} + \frac{X_{\text{vol, Fp}}}{X_{\text{vol, Bm}}} \frac{\rho_{\text{Fp}}}{\rho_{\text{Bm}}},}
\]

(15)

with \(X_{\text{vol, CaPv}} \), \(X_{\text{vol, Bm}} \) and \(X_{\text{vol, Fp}} \) the volume proportion of Ca-silicate perovskite (CaPv), Bm, and Fp, respectively, which are input parameters of our model, and \(\rho_{\text{CaPv}}, \rho_{\text{Bm}}, \) and \(\rho_{\text{Fp}} \) the density of CaPv, Bm, and Fp, respectively. These densities are additional unknowns that can be calculated using the Mie-Grüneisen-Debye equation of state. Inserting eqs 14 and 15 in eq 13, we obtain another relationship between \(x_{\text{Bm}}, x_{\text{Fp}} \) and \(x_{\text{Al}} \). The last relationship is obtained considering \(P_{\text{FeO}} \), the amount of FeO in the composition (wt%). More specifically, we use the fact that

\[
\frac{P_{\text{FeO}}}{P_{\text{Al}_2\text{O}_3}} = \frac{M_{\text{FeO}}}{M_{\text{Al}_2\text{O}_3}} \frac{2X_{m,\text{Bm}}M_{\text{Fp}}x_{\text{Bm}} + X_{m,\text{Fp}}M_{\text{Bm}}x_{\text{Al}}}{X_{m,\text{Bm}}M_{\text{Fp}}x_{\text{Al}}},
\]

(16)

with \(X_{m,\text{Fp}} \) the mass proportion of Fp, \(M_{\text{FeO}} \) and \(M_{\text{Fp}} \) the molar mass of FeO and Fp, respectively. We finally obtain a system of six equations (eqs. 1, 13, 16 and the Mie-Grüneisen-Debye equation of state applied to each of the three minerals considered) and 6 unknowns \((x_{\text{Bm}}, x_{\text{Fp}}, x_{\text{Al}}, \rho_{\text{CaPv}}, \rho_{\text{Bm}}, \) and \(\rho_{\text{Fp}} \)) that can be solved numerically. Note that these equations can be rearranged to obtain a system of three equations and three unknowns, making the calculation faster and more accurate.
Determination of the isentropic bulk modulus K_s

The isentropic bulk modulus K_s can be calculated using

$$K_s = K_T (1 + \alpha \gamma T), \quad (17)$$

where K_T is the isothermal bulk modulus, α the thermal expansion coefficient and,

$$\gamma = \gamma_0 \left(\frac{V}{V_0} \right)^q, \quad (18)$$

the Grüneisen parameter, with V the volume and q a constant parameter. Note that the subscript 0 indicates that the property is taken at ambient conditions.

The temperature derivative of the Mie-Grüneisen-Debye equation of state (Jackson and Rigden, 1996) implies that

$$\alpha = \frac{\gamma}{V K_T} \left(\frac{\partial \Delta E_{th}}{\partial T} \right)_V, \quad (19)$$

where

$$\Delta E_{th} = E_{th}(T) - E_{th}(T_0), \quad (20)$$

and

$$E_{th} = \frac{9nRT^4}{\theta^3} \int_{0}^{\theta/T} \frac{x^3}{e^x - 1} dx, \quad (21)$$

is the vibrational energy (calculated from the Debye model), with T the temperature, R the gas constant, n the number of atoms per formula unit, and

$$\theta = \theta_0 e^{\frac{2n - \gamma}{q}}, \quad (22)$$

the Debye temperature. Finally, the temperature derivative of eq 20 gives

$$\left(\frac{\partial \Delta E_{th}}{\partial T} \right)_V = \frac{4E_{th}}{T} - \frac{9nR\theta}{T(e^\theta/T - 1)}. \quad (23)$$
Furthermore, the volume derivative of the Mie-Grüneisen-Debye equation of state gives

\[K_T(V, T) = K_T(V, T_0) - (q - 1) \frac{\gamma \Delta E_{th}}{V} - \gamma \left(\frac{\partial \Delta E_{th}}{\partial V} \right)_T, \]

where \(K_T(V, T_0) \) is calculated with the volume derivative of the third order Birch-Murnaghan equation of state,

\[K_T(V, T_0) = \frac{3K_{T0}}{4} (K'_{T0} - 4) \left(\frac{V_0}{V} \right)^{2/3} \left[\left(\frac{V_0}{V} \right)^{7/3} - \left(\frac{V_0}{V} \right)^{5/3} \right] + \]

\[\frac{K_{T0}}{2} \left\{ 1 + \frac{3}{4} (K'_{T0} - 4) \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right] \right\} \left[7 \left(\frac{V_0}{V} \right)^{7/3} - 5 \left(\frac{V_0}{V} \right)^{5/3} \right], \]

and the volume derivative of eq 20 writes

\[\left(\frac{\partial \Delta E_{th}}{\partial V} \right)_T = \frac{\gamma \theta}{V} \left(3 \frac{\Delta E_{th}}{\theta} - 9R \left[\frac{1}{e^{\theta/T} - 1} - \frac{1}{e^{\theta/T_0} - 1} \right] \right). \]

This set of relationships allows to calculate \(K_s \) at any (P,T) conditions as a function of \(V \) and mineral properties at ambient conditions. While the mineral properties at ambient conditions are reported in Tables 1 and 2, the volume \(V \) is obtained by solving the Mie-Grüneisen-Debye equation of state.

Spin state transition

The effect of the Fe\(^{2+}\) spin state transition in ferropericlase is calculated following Vilella et al. (2015), which is itself based on the theoretical work of Sturhahn et al. (2005). In this approach, we calculate the average Fe\(^{2+}\) spin configuration in Fp by minimizing the Helmholtz free energy: \(F = U - TS \). Although it may be more realistic to minimize the Gibbs free energy, minimizing the Gibbs or Helmholtz free energy actually gives equivalent results, while considering the Gibbs free energy increases importantly the computational time. The internal energy is given by

\[U = -NJ_{ls} \eta_{ls}^2 + N(\eta_{ls}E_{ls} + \eta_{hs}E_{hs}), \]

5
where N is the number of Fe$^{2+}$ in Fp, E_{LS} and E_{HS} are the energy levels of LS state and HS state, respectively, J_{LS} is the coupling LS state-LS state, η_{LS} and η_{HS} the fractions of Fe$^{2+}$ in LS state and HS state, respectively, with $\eta_{LS} + \eta_{HS} = 1$. The entropy of the crystal can be written as

$$S = -k_B N \left[\eta_{LS} \ln \left(\frac{\eta_{LS}}{g_{LS}} \right) + \eta_{HS} \ln \left(\frac{\eta_{HS}}{g_{HS}} \right) \right],$$

where k_B is the Boltzmann constant, g_{LS} and g_{HS} are the energy degeneracies of the electronic configuration. These expressions allows to obtain the fraction of iron in the LS state as a function of iron content, volume, and temperature.

Additional information on the reference composition

Following the nature of the available observations, constraints on LLSVPs can only be obtained relatively to the far-field mantle. As such, our choice for the reference composition has a critical importance. Here, we follow the traditional assumption of a pyrolitic mantle (McDonough and Sun, 1995). More specifically, we choose to consider the pyrolitic composition investigated by Iri- fuse et al. (2010) and described in Tables 3 and 4. It is however important to note that different pyrolitic models have been suggested exhibiting slight compositional variations (e.g., see Table 3). In order to confirm the relevance of our reference composition, we report in Figure 6 the predicted density and seismic wave speed profiles compared to PREM. Note that we have accounted for the uncertainties on mantle temperatures (e.g., Deschamps and Trampert, 2004) by considering the geotherm of Brown and Shankland (1981) as a lower bound, and the geotherm from 3D numerical simulations (Vilella et al., 2015) as an upper bound. As shown in Figure 6, the calculated profiles for V_S and, to a lesser extent, V_P are underestimated by our model. The disagreement is higher at lower pressures, up to $\sim 6\%$ and $\sim 2.5\%$, respectively, and vanishes at lowermost mantle condition. This disagreement is probably due to the uncertainties on the determination of the shear modulus. However, a key result of our work is that the constraints on the V_S and V_P anomalies of LLSVPs are much less efficient.
than the ones on the density and V_ϕ to constrain the potential composition of LLSVPs. As a result, the crucial requirement for our reference composition is to predict reasonably well the density and bulk sound velocity of the lowermost mantle. While PREM density is perfectly reproduced by our reference composition (Figure 6c), the bulk sound velocity predicted is slightly lower than PREM (up to \sim1.5%). This may be due to the presence of MORB material in the lowermost mantle. Indeed MORBs are characterized by a higher bulk sound velocity than PREM (Wu et al., 2017), so that the presence of a MORB component may explain the difference between our calculated V_ϕ and the one estimated by PREM. We therefore conclude that our reference composition is compatible with available constraints.

Reference

Table 1: Isothermal bulk modulus (K_{T0}) and volume (V_0) at ambient conditions for several compounds.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>K_{T0} (GPa)</th>
<th>V_0 (cm3mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>160a</td>
<td>11.25a</td>
</tr>
<tr>
<td>FeO (LS)</td>
<td>150b</td>
<td>10.82b</td>
</tr>
<tr>
<td>FeO (HS)</td>
<td>150</td>
<td>12.18b</td>
</tr>
<tr>
<td>MgSiO$_3$</td>
<td>261c</td>
<td>24.43c</td>
</tr>
<tr>
<td>0.85MgSiO$_3$-0.15FeSiO$_3$</td>
<td>259c</td>
<td>24.58c</td>
</tr>
<tr>
<td>0.915MgSiO$_3$-0.085Fe$_2$O$_3$</td>
<td>237d</td>
<td>24.95d</td>
</tr>
<tr>
<td>0.90MgSiO$_3$-0.10FeAlO$_3$</td>
<td>262e</td>
<td>24.80e</td>
</tr>
<tr>
<td>0.90MgSiO$_3$-0.10Al$_2$O$_3$</td>
<td>244e</td>
<td>24.66e</td>
</tr>
<tr>
<td>CaSiO$_3$</td>
<td>236f</td>
<td>27.45f</td>
</tr>
</tbody>
</table>

a Speziale et al. (2001).
b Fei et al. (2007).
c Lundin et al. (2008).
d Catalli et al. (2010).
e Catalli et al. (2011).
f Shim et al. (2000b).
Table 2: Equation of state parameters for lower mantle minerals: Bridgmanite (Bm), Ferropericlase (Fp) and Ca-Perovskite (CaPv).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bm</th>
<th>Fp</th>
<th>CaPv</th>
</tr>
</thead>
<tbody>
<tr>
<td>K'_T_0</td>
<td>3.7a</td>
<td>4b</td>
<td>3.9c</td>
</tr>
<tr>
<td>θ_0, (K)</td>
<td>1100a</td>
<td>673b</td>
<td>1000c</td>
</tr>
<tr>
<td>γ_0</td>
<td>1.4a</td>
<td>1.41b</td>
<td>1.92c</td>
</tr>
<tr>
<td>q</td>
<td>1.4a</td>
<td>1.3b</td>
<td>0.6c</td>
</tr>
</tbody>
</table>

a Fiquet et al. (2000).
b Jackson and Niesler (1982).
c Shim et al. (2000a).
<table>
<thead>
<tr>
<th></th>
<th>This study</th>
<th>McDonough and Sun (1995) Pyrolite (wt%)</th>
<th>CI (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>37.8</td>
<td>44.3</td>
<td>45.0</td>
</tr>
<tr>
<td>MgO</td>
<td>51.6</td>
<td>40.7</td>
<td>37.8</td>
</tr>
<tr>
<td>FeO</td>
<td>5.7</td>
<td>8.0</td>
<td>8.05</td>
</tr>
<tr>
<td>CaO</td>
<td>3.1</td>
<td>3.4</td>
<td>3.55</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>1.8</td>
<td>3.6</td>
<td>4.45</td>
</tr>
</tbody>
</table>
Table 4: Chemical composition in mol% of bridgmanite (Bm) and ferropericlase (Fp) in our reference composition.

<table>
<thead>
<tr>
<th></th>
<th>Bm</th>
<th>Fp</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgSiO$_3$</td>
<td>0.896</td>
<td>MgO 0.814</td>
</tr>
<tr>
<td>FeSiO$_3$</td>
<td>0.037</td>
<td>FeO 0.186</td>
</tr>
<tr>
<td>FeAlO$_3$</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>0.030</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: 2D histograms showing the distribution of all the models as a function of the density anomaly (y-axis) for each parameter (x-axis).
Figure 2: 2D histograms showing the distribution of all the models as a function of the V_S anomaly (y-axis) for each parameter (x-axis).
Figure 3: 2D histograms showing the distribution of all the models as a function of the V_P anomaly (y-axis) for each parameter (x-axis).
Figure 4: 2D histograms showing the distribution of all the models as a function of the V_ϕ anomaly (y-axis) for each parameter (x-axis).
Figure 5: Histograms of the molar proportion of various Bm components for the successful models. For graphical reasons, the y-axis is truncated at 20% whereas the amplitude of the Fe$\textsubscript{2}$O$\textsubscript{3}$ component distribution reaches almost 95%. The results show a clear preference of the FeAlO$_3$ component over the Fe$\textsubscript{2}$O$\textsubscript{3}$ and Al$\textsubscript{2}$O$_3$ components, which typically remain lower than 5 mol%.
Figure 6: Plots of (a) the S-wave velocity V_S, (b) the P-wave velocity V_P, (c) the density ρ, and (d) the bulk sound velocity V_ϕ as a function of pressure given by PREM (black symbols) and calculated for our reference composition (blue shaded area). The blue shaded area accounts for uncertainties on mantle temperatures (see text for more details).