Polyphase history and kinematics of a complex major fault zone in the northern Taiwan mountain belt: the Lishan Fault

Jian-Cheng Lee 1, Jacques Angelier 2, and Hao-Tsu Chu 3

1 Institute of Earth Sciences, Academia Sinica, P.O. Box 1-55, Nankang, Taipei, Taiwan, R.O.C.
3 Central Geological Survey, P.O. Box 968, Taipei, Taiwan, R.O.C.

Abstract
The Lishan Fault is a major fault zone in the Taiwan collision belt. It separates two major units, the Hsüehshan Range and the Backbone Range, which differ in lithology, ages of sediments, metamorphic grades and deformation styles. Despite the importance of the Lishan Fault, its evolution and tectonic behaviour remained poorly known and controversial. We therefore carried out a tectonic study which includes both the identification of structures in and along the fault zone and the paleostress analysis aiming at reconstructing the succession of fault mechanisms. The Lishan Fault zone underwent polyphase evolution with reactivations under different tectonic regimes, consistent with the Cenozoic history of Taiwan.

(1) On the Hsüehshan Range, the earliest events reflect the Paleogene-Miocene extension of the Chinese continental margin.
(2) Serial cross-sections and observation of ductile-brittle structures show east-vergent folding, indicating that for the most recent compressional evolution related to Late Cenozoic Taiwan collision the Lishan Fault was a steeply dipping east-vergent backthrust. The compression occurred along NW-SE trends, inducing thrusting, but also along N-S ones, inducing transpression with reverse sinistral slip. The Lishan Fault thus underwent contraction as well as strike slip during the mountain building of the Taiwan orogeny. Reverse and strike-slip fault systems alternated because of permutations \(\sigma_2/\sigma_3 \) under the same compressional stress regime of NW-SE \(\sigma_1 \). Minor compressional events also occurred.
(3) A late extension, accommodated by normal faulting, reveals the influence of both the N-S extension in the Okinawa Trough northeast off Taiwan.

Keywords: fault; deformation; polyphase; Taiwan; paleostress

1. Introduction
The Lishan Fault zone trends parallel to the major NNE trending grain of the Taiwan mountain belt (Fig. 1). It corresponds to two major valleys, the Lanyangchi valley to the north and the Tachiachi valley to the south, the water divide being 20 km north of Lishan. The Lishan Fault zone separates two major geological provinces: the Hsüehshan Range to the west and the Backbone Range to the east (Fig. 1). Major differences between the Hsüehshan Range and the Backbone Range are highlighted by the contrasts in lithologies, ages of rock formations, grades of metamorphism and styles of deformation. The Hsüehshan Range is composed of Paleogene continental margin sediments, mostly Eocene and Oligocene in age (Tab. 1). The Backbone Range consists of Paleogene to Neogene pelitic sediments, Eocene to Miocene in age (with a hiatus of the Oligocene formations in northern Taiwan, see Teng.
et al., 1991). Along the Lishan Fault zone, the Oligocene massive sandstone and slate formations of the Hsüehshan Range are in contact with the Miocene slate formation of the Backbone Range.

In general, the metamorphic grade in the Taiwan mountain belt increases from west (the foreland) to east. The prehnite-pumpellyite facies is present in the western Hsüehshan Range whereas the upper greenschist facies is represented in the eastern Hsüehshan Range (Liou, 1981; Chen et al., 1983b). However, east of the contact between the Hsüehshan Range and the Backbone Range, lower metamorphic grade facies (prehnite-pumpellyite facies) are found in the western Backbone Range (Chen, 1984; Chen et al., 1983b; Liu, 1988; Hsieh, 1990). A major discontinuity thus occurs in the distribution of metamorphism between the Hsüehshan Range and the Backbone Range, corresponding to the location of the present Lishan Fault zone.

Concerning the style of the late Cenozoic deformation, the pop-up structure (Clark et al., 1993; Chu et al., 1996), symmetric folds and coaxial strain deformation (Tillman and Byrne, 1995) prevailing in the Hsüehshan Range was not observed in the Backbone Range, which by contrast is generally characterized by asymmetric folds with west-vergent shear structures and noncoaxial strain deformation.

Outcrops along the Lishan Fault are
Table 1
Stratigraphic units and their lithology, Lishan Fault area, northern Taiwan

<table>
<thead>
<tr>
<th>Stratigraphic unit</th>
<th>Age</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsüehshan Range, Meichi Sandstone</td>
<td>late Oligocene</td>
<td>Medium to fine grained sandstone or quartzite, with intercalated shale or argillite</td>
</tr>
<tr>
<td>Hsüehshan Range, Szeleng Sandstone</td>
<td>Oligocene</td>
<td>Coarse-grained massive sandstone or quartzite, with intercalated thin layers of shale or argillite</td>
</tr>
<tr>
<td>Hsüehshan Range, Chiayang Formation</td>
<td>Oligocene</td>
<td>Slate, sometimes with thin layers of psammitite</td>
</tr>
<tr>
<td>Hsüehshan Range, Tachien Sandstone</td>
<td>Eocene</td>
<td>Carboniferous limestone</td>
</tr>
<tr>
<td>Backbone Range, Lushan Formation</td>
<td>late Oligocene to Miocene</td>
<td>Slate, sometimes with sandstone layers</td>
</tr>
</tbody>
</table>

discontinuous and often difficult to access; in addition, similar slate formations are present on both sides of the southern segment of the Lishan Fault zone, which makes geological mapping difficult. Field observations across the Lishan Fault zone were carried out based on mapping and geothermal investigation (Tseng, 1978), as well as study of metamorphism (Chen, 1979; Chen et al., 1983b). All these studies, however, did not aim at elucidating the tectonic behaviour of the Lishan Fault zone. Studies of the seismicity distribution and analyses of earthquake focal mechanisms (Tsai, 1975; Wu, 1978; Yeh et al., 1991) revealed that the Lishan Fault is seismically active, with an extensional tectonic regime prevailing at the northern tip, near the Ilan Plain (Fig. 2).

Although the Lishan Fault is one of the largest features of the Taiwan mountain belt (Biq, 1971; Ho, 1986a and b; Ho, 1988), its significance remains unclear. The linear trace, juxtaposition of contrast rock units (at least in the northern and central part), contrast in metamorphic grades and presence of fractured cataclastic rocks leave little doubt that the Lishan Fault represents a major shear zone. However, the absence of reliable markers of displacement across the shear zone made the determination of the sense and amount of displacement difficult. As a consequence, the structural interpretation is controversial. The Lishan Fault has previously been interpreted as an oblique left-lateral shear zone with west-verging reverse component of motion (Biq, 1971; Wu, 1978). Stratigraphic studies revealed a significant contrast between the formations on the western (Hsüehshan Range) and eastern (Backbone Range) sides of the fault; this contrast was attributed to the presence of a major normal fault during the Oligocene (Teng et al., 1991).

Recently, strain analysis in the Hsüehshan Range of central Taiwan (Clark et al., 1993; Tillman and Byrne, 1995) suggested the presence of an east-vergent backthrust structure in the Lishan Fault zone, forming the eastern boundary of the Hsüehshan Range which exhibits a pop-up structure. However, Crespi et al. (1992) suggested that the Lushan Formation of the Backbone Range (east of the Lishan Fault) is affected by N-S trend normal faulting, based on field observation. In summary, the Cenozoic structure of the Lishan Fault reveals contradictory aspects in that it shows contrasting evidences of being a major normal fault, a major reverse fault, and also a sinistral strike-slip fault. Furthermore, although the Lishan Fault was classically interpreted as an old fault bounding an extensional basin of the Chinese continental margin (Teng et al., 1991), a new interpretation of the whole Central Range of Taiwan suggested that the Lishan Fault zone was a major suture zone during the late Miocene, between the Chinese continental margin and an accretionary prism corresponding to the present Backbone Range (Lu and Hsü, 1992).

Because of its major role in the mountain building of Taiwan, the structural evolution of the Lishan Fault deserves particular consideration. In this paper, we combine field observation of geological structure and regional paleostress analyses, in order to better describe the Lishan Fault zone and to understand its tectonic behaviour. Our study concentrates on the northern and the central part of the Lishan Fault (Fig. 2a), where massive sandstones provide good stratigraphic markers within the Hsüehshan Range, in contrast with the slates of the Backbone Range.

2. The Lishan Fault zone: stratigraphy and structure

The geological structures in the Lishan Fault area are principally characterized by folds and faults.
on both sides (Hsüehshan Range and Backbone Range). The geological cross-section of Figure 2b illustrates the general structure across the Lishan Fault zone. The names of formations, which are not discussed in the text, are described in Figure 2 and Table 1.
2.1. The Hsüehshan Range

On the western side of the Lishan Fault, Paleogene formations of massive sandstone are about 950 m thick to the north (the Szeleng Sandstone; Huang and Lee, 1992) and 2,000 m thick to the south (the Tachien Sandstone; Chen 1979; Lee, 1987). Their presence makes structural analysis easier in the Hsüehshan Range, revealing a succession of folds truncated by faults (Fig. 2b). These sandstones, Eocene (Tachien) to Oligocene (Szeleng) in age, are the oldest rock formations in this area. According to Chen (1977, 1979, 1992), a significant change in facies occurs from north to south in the Hsüehshan Range, the sediment grain size being finer to the south. As a consequence, the rock formations which are in tectonic contact with the Backbone Range change from sandstone (in the northern part of the study area) to slate (in the southern part).

Above these sandstone formations, there is a sequence of slates and interbedded slates and psammites, with a change in facies (the sediments being generally finer to the southeast). These slate formations are affected by narrowly spaced folds and faults. Near the base, however, the structures resemble those of the underlying sandstone formation; the wavelength of the fold decreases generally upward because of the change in lithology (Fig. 2b). In this slate formation, the cleavage is well developed and is often nearly vertical. A recent structural analysis of the Hsüehshan Range (Chu et al., 1996) indicated that the overall structure is characterized by repeated pop-up structures with folding and thrusting verging both to the east and to the west.

2.2. The Backbone Range

On the eastern side of the Lishan Fault in the study area (Fig. 2a), the Neogene slate formation is composed of black or grey slates with occasional intercalation of psammite layers. This Lushan Formation is characterized by a tight slaty cleavage dipping steeply to moderately to the southeast; shear zones contain numerous folded quartz and calcite veins. On a wider scale, the Lushan Formation reveals a regular west-vergent shear structure. The deformation pattern, however, differs from that of the adjacent Hsüehshan Range, with tighter folds and two main cleavages (instead of a single one in the Hsüehshan Range).

Because fossils are scarce, the age range of the Lushan Formation is still not accurately defined. A Miocene age (N6-N9 zones) was determined by fossils in the upper part near the contact with the Hsüehshan Range (Chang, 1971, 1974 and 1976). As for the lower part, in the absence of stratigraphic data, a late Oligocene age cannot be excluded (Chen, 1977 and 1992).

2.3. Reconstruction of serial cross-sections

The geological sections of Figure 3 describe the structure of the Lishan Fault zone, over a distance of about 60 km from Niuto to Lishan. They were built based on direct observation in outcrops, that is, with little extrapolation. They are presented below from north to south.

Near Niuto (profile AA', Fig. 3), the Paleogene massive sandstone (Hsüehshan Range) forms a gentle anticline across the valley. East of this anticline, the Neogene slate formation (Backbone Range) crops out and dips steeply to the southeast. The contact between the two lithological units, which is difficult to observe because of vegetation, is probably a shear zone, as indicated by the presence of fractured blocks. Two kilometers farther south (profile BB', Fig. 3), the Paleogene sandstone and the Neogene slate formation are separated by the valley alluvium (about 300 m wide). A shear zone was observed on the eastern border of the Paleogene sandstone, containing broken rocks and many striated fault surfaces. It implies the existence of a strong deformation concentrating between these two units.

Near Chilun, two profiles (CC' and DD', Fig. 3) show that the anticline of Paleogene sandstone of the Hsüehshan Range constitutes an east-vergent fold. On the Backbone Range, the slate formation dips steeply to the southeast as before. Within the anticline of the Paleogene sandstone, fault striations and quartz veins (sometimes arranged en échelon), indicate brittle deformation associated with folding in this shear zone. The various natures and orientations of brittle structures illustrate the complexity of the tectonic history of the Lishan Fault, requiring special analysis (discussed in the next section).

Near Nanshan (profiles EE' and FF', Fig. 3), the structure remains similar to that of profiles CC' and DD', the bedding planes near the contact between the massive sandstone and the slate formation being almost vertical. The contact itself is represented by a shear zone with numerous fractured blocks. This shear zone dips very steeply to the northwest (profile FF', Fig. 3). At a short distance to the south, near Szeyuan (profile GG', Fig. 3), the contact between the Hsüehshan Range and the Backbone Range shows nearly vertical bedding planes. All these sections show a large east-vergent flexure zone which becomes tighter to the south (Fig. 3).
Near Wuling, half-way between Nanshan and Lishan (profile HH', Fig. 3), a sandstone formation with interbedded slates replaces the massive sandstone, as a result of the change in facies along the Hsüehshan Range (Chen 1979; Chen et al., 1983a). This formation is folded as an east-vergent anticline, similar to that of profile DD'. Outcrops are scarce along the contact; however, at a short distance to the east, the black slate of the Lushan Formation dips steeply to the southeast.

Finally, near Lishan (profile II', Fig. 3), another facies of the Oligocene rock formation in the Hsüehshan Range (the Chiayang Formation, see Tab. 1), which consists of slates and interbedded psammites, is in contact with the Neogene slate formation of the Backbone Range. As a result, the contrast in lithology observed in the sections
presented above is absent and the structural analysis is more difficult. However, we could identify east-vergent folding and shearing in the Chiayang Formation of the Hsüehshan Range, based on the relationship between bedding and slaty cleavage as well as on the presence of S/C fabrics. These aspects are illustrated in a local cross-section (Fig. 4).

2.4. Structure of the Lishan Fault

The reconstruction of these nine serial cross-sections across the Lishan Fault zone (Fig. 3), in addition to scattered observations, led us to the conclusions listed below:

(1) On the western side of the Lishan Fault (the Hsüehshan Range), a gradual facies change occurs within the Paleogene sediments. From north to south, thick layers of massive sandstone (the Szeleng Sandstone) change progressively to series of interbedded sandstones and slates (the Meichi Sandstone) and possibly to slates (the Chiayang Formation) in the southern part of the studied area. On the eastern side of the Lishan Fault (the Backbone Range), the Miocene slate Lushan Formation crops out continuously. This contrast in lithology and age across the Lishan Fault zone suggests that during the Paleogene and the Miocene the Lishan Fault already represented a major discontinuity between the present Hsüehshan and Backbone Ranges. As far as its oldest history is concerned, it is of importance to keep in mind that this major discontinuity has been interpreted in two contrasting ways: a simple basin boundary within the Chinese continental margin (Teng et al., 1991), or a domain undergoing subduction at the front of an accretionary prism and finally becoming a suture zone during the late Miocene (Lu and Hsü, 1992). Details will be discussed in the later section.

(2) An east-vergent shear zone of backfolding and backthrusting follows the eastern border of the Hsüehshan Range. Such backfolding and backthrusting is known elsewhere in the Taiwan mountain belt, especially in the Central Range including the Backbone Range and the Pre-Tertiary Basement (Fig. 1), although west-vergent structures consistent with generally westward transportation dominate (this is the case for most major thrust faults in the Taiwan belt). The western Hsüehshan Range is thrust to the west, especially near the Chuchih Fault (Fig. 2). In contrast with this general attitude, we observed east-vergent folding and flexuring on the eastern side of the Hsüehshan Range, near the Lishan Fault zone (as most profiles of Figure 3 show).

Fig. 4. Field section showing east-vergent folding and shearing structures along the East-west cross island highway, west of the Lishan Fault (location in fig. 2) in the Chiayang Formation. Note the relationship between bedding, metamorphic cleavage, fold, reverse faulting and S/C shear fabrics.
(3) The nearly vertical attitude of the bedding and the cleavage along the Lishan Fault zone (Fig. 3) indicate that the dip of the Lishan Fault is nearly vertical on the surface. The east-vergent shearing structures prevailing on the western side of the Lishan Fault infer that the fault is dipping steeply to the west. On the other hand, the vertical-to-steeply dipping to the east cleavage on the eastern side of the Lishan Fault (Fig. 3) show that the fault had probably initiated westerly-vergent with a dip to east. Thus this structural geometry suggests that the contact of the Hsiëhshan Range and the Backbone Range corresponds to a boundary which limited the east-vergent structures and a zone of back-thrusting dipping steeply to the west near the surface and the dip of the fault plane may turn to east in the deep down (Fig. 2b).

(4) The Lishan Fault has a complicated tectonic history, as revealed by the variety of brittle and ductile structures in nature and orientation. This Late Cenozoic tectonic evolution included extensional regimes (the oldest ones may correspond to the evolution of the Chinese continental margin) as well as compressional regimes (the most recent ones being related to the Plio-Pleistocene collision). In order to decipher this structural complexity, the structural analysis presented above will not suffice. A specific tectonic analysis was consequently undertaken.

3. Tectonic analysis along the Lishan Fault

Numerous structures related to brittle deformation were observed along the Lishan Fault zone. Systematic orientation data were collected at sites where the bedrock crops out in the absence of landslides.

A 400 m long cross-section in the Chiayang slate Formation of the Hsiëhshan Range near Lishan (Fig. 4) is first presented to illustrate the characteristics of ductile-brittle deformation. East-vergent shearing is characterized by bedding/cleavage relationships, S/C fabrics, and east-vergent folds and faults. These features are consistent not only with the larger structures (Fig. 3), but also with the pyrite pressure shadow shearing structures indicating east-vergent shear at the microscopic scale in this area (Clark et al., 1993).

Systematic analyses of brittle structures were carried out along the Lishan Fault, in order to identify the paleostress states related to tectonic mechanisms within this fault zone. A brittle shear zone was observed at several places along the Lishan Fault valley, and numerous folds, faults and fractures were analysed within this shear zone. We describe below the characteristics of fractures, and we present the criteria used to establish the tectonic chronology, before discussing results of the tectonic analysis.

Regarding the methods, we first adopted usual tectonic interpretation in structural geology (e.g., Dunne and Hancock, 1994). Good examples of significant features along the Lishan Fault zone are the sets of large quartz veins indicating perpendicular tensile effective stress, or the en échelon pattern of smaller sigmoidal quartz veins indicating shear. However, specific methods were required to decipher the polyphase brittle evolution of the Lishan Fault zone.

3.1. Methods for paleostress determinations

A more complete reconstruction of paleostresses was obtained through inverse methods which allow reconstruction of paleostress tensors using sets of fault slip data. Such an analysis is based on the concepts of mechanical relationships between brittle features (especially striated faults) and paleostress. During the last decades, it has proved to be successful for identification and characterization of tectonic events (Angelier, 1984 and 1990), and was thus extensively used to interpret fault slip patterns.

In summary, based on the stress-slip relationships in faulted media undergoing small brittle deformation, a reduced stress tensor is calculated for each tectonic regime provided that the size and variety of the fault-slip data set collected allows application of the least-square techniques. Four variables are thus determined, which describe the orientation of the three principal stress axes σ_1, σ_2, and σ_3 and the ratio between principal stress differences, $\Phi = (\sigma_2-\sigma_3)/(\sigma_1-\sigma_3)$. This ratio plays an important role in stress-shear relationships. Note that σ_1 is the maximum compressional stress while σ_3 is the minimum stress (compression being considered positive).

The assumption that for a given event and a given rock mass all faults moved independently but consistently under a single homogeneous stress regime expressed by an unique stress tensor is an approximation. Data collection involves errors, dispersion occurs in local stress patterns, the presence of weakness zones induces stress perturbation, and faults movements influence another mechanically and geometrically. Theoretical evaluation of such effects was made based on distinct-element analysis by Dupin et al. (1993), showing that dispersion remains generally small provided that fault slip data sets are large and
include a variety of orientations. Similar conclusions had been obtained empirically, resulting from local and regional applications which revealed that the average misfit between observed fault slips and calculated shear vectors on fault planes remains generally small, within the range of measurement and observation uncertainties. Thus, for a given tectonic event, stress fields can be reliably reconstructed on the regional scale, based on the compilation of local determinations of stress tensors.

In practice, one searches for the best fit between all slip data collected in a rock mass which experienced faulting. Some examples of such determinations are shown in Figs. 5 and 6. Misfit estimators deserve special attention because they allow evaluation of the reliability of the results. The nature and significance of misfits are discussed extensively elsewhere (Angelier, 1990). In this paper, for convenience, the misfits for each tensor determination are summarized in Table 2 through a single quality estimator, from A (excellent) to D (poor). Stress tensor determinations along the Lishan Fault were generally acceptable. The qualities range only from B to D, but consistency of the results at various sites induces confidence in the results. Consideration of tension data, such as for mineral veins, provided useful additional information.

Dilatant veins and striated faults were observed. The horizontal surface of each studied site is less than 0.5 km². Faults and veins were easily identifiable due to the presence of slickenside lineations and mineral infills (in most cases quartz). Systematic collection of orientation data was carried out for bedding surfaces, faults and slip vectors indicated by striae and veins. A crucial aspect in data collection was the determination of slip senses, which was done based on offsets of layers as well as on several criteria reported in the literature (Petit, 1987; Angelier, 1994).

Fig. 5. Examples of stress tensor determination in the area of the Lishan Fault. Stereoplots: Schmidt’s projection, lower hemisphere. Bedding planes shown as dashed-line great circles. Fault planes shown as thin great circles, with slickenside lineations as dots with arrows indicating the sense of motion (inward direction for reverse slip). Computed stress axes shown as stars with five branches (σ_1), four branches (σ_2), and three branches (σ_3). Method of calculation of stress tensor: Angelier (1984). (a) Major NW-SE compression, strike-slip faulting (Niuto, location in Fig. 7). (b) Major NW-SE compression, reverse faulting (same site). (c) Minor NE-SW compression, strike-slip faulting (Chilun, location in Fig. 7). (d) Minor NE-SW compression, oblique reverse faulting (Szeyuan, location in Fig. 7 and backtilting in Fig. 6c). Numerical results given in Table 2.
Fig. 6. Evolution of brittle tectonics and paleostress reconstructions at Szeyuan. Location in Figs 2 and 7. Stereoplots: Schmidt’s projection, lower hemisphere (symbols as for Fig. 5). Backtilting shown for pre-folding patterns. (a), quartz veins, WNW-ESE extension. (b), quartz veins, NE-SW extension or NW-SE compression. (c) tilted strike-slip faults, minor NE-SW compression. (d) strike-slip faults, main NW-SE compression. (e), reverse faults, main NW-SE compression. (f) Normal faults, late NW-SE extension. On right, thin solid-line arrows (sense from older to younger) indicate relative chronology at this site while thin dashed-line arrows summarize relative chronology at other sites.
Table 2
Results of paleostress analysis along the Lishan Fault.

<table>
<thead>
<tr>
<th>Site Ref.</th>
<th>Formation affected</th>
<th>Latitude (N)</th>
<th>Longitude (E)</th>
<th>axis σ_1</th>
<th>axis σ_2</th>
<th>axis σ_3</th>
<th>Φ</th>
<th>N</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIUTO001A</td>
<td>" 24°38' 121°33'</td>
<td>139 1 18 88</td>
<td>229 1 .72</td>
<td>32 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIUTO001B</td>
<td>" 24°37'30" 121°33'</td>
<td>317 3 226 14</td>
<td>59 76 .71</td>
<td>13 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIUTO001C</td>
<td>" 24°37'30" 121°33'</td>
<td>272 12 29 65</td>
<td>178 22 .41</td>
<td>39 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szeleng</td>
<td>" 24°34'30" 121°27'42"</td>
<td>79 10 309 75</td>
<td>171 12 .48</td>
<td>6 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHILA003</td>
<td>" "</td>
<td>136 2 281 87</td>
<td>46 2 .44</td>
<td>7 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHILA005</td>
<td>" "</td>
<td>294 1 202 69</td>
<td>24 21 .53</td>
<td>7 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TULIN001</td>
<td>Lushan 24°25' 121°21'24"</td>
<td>101 12 335 70</td>
<td>194 15 .51</td>
<td>16 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TULIN02A</td>
<td>Szeleng</td>
<td>360 2 92 51</td>
<td>268 38 .16</td>
<td>7 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TULIN02B</td>
<td>" "</td>
<td>277 13 185 10</td>
<td>59 74 .51</td>
<td>13 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZEYU001</td>
<td>" 24°23' 121°20'30"</td>
<td>56 6 149 20</td>
<td>309 69 .41</td>
<td>10 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZEYU001</td>
<td>" "</td>
<td>309 15 143 75</td>
<td>40 4 .92</td>
<td>17 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZEYU001</td>
<td>" "</td>
<td>295 1 205 2</td>
<td>46 88 .59</td>
<td>11 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZEYU001</td>
<td>" "</td>
<td>270 72 54 15</td>
<td>147 10 .15</td>
<td>9 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WULIN001</td>
<td>Meichi 24°21 121°18'54"</td>
<td>107 9 275 81</td>
<td>17 2 .42</td>
<td>16 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trends and plunges of the principal stress axes in degrees. N: number of measurements. Q: quality of the results of the calculated tensor (decreasing from A to D).

From the tectonic point of view, it is extremely important to distinguish brittle structures related to distinct tectonic regimes, and it is even more important to separate structures resulting from different tectonic events. A single tectonic event may correspond to two or more stress regimes, and the distribution of paleostress trends for a given event may be affected by stress permutations (a phenomenon which occurred along the Lishan Fault zone, as discussed in a later subsection). Before discussing the chronological aspects of the tectonic history of the Lishan Fault zone as revealed by paleostress analysis, it is worthwhile to present the main regimes that could be identified.

3.2. Main paleostress regimes

The Lishan Fault zone is characterized by polyphase deformation. The most important deformation event observed in the field is represented by veins, folds, joints, and faults, all compatible with a maximum compressional stress (σ_1) trending NW-SE and nearly horizontal. Note that this orientation of compression is consistent with the overall mechanism of the Plio-Pleistocene collision of Taiwan.

The oldest fractures that we have found in this area are quartz veins. Some of these veins strike approximately NE-SW and reveal a NW-SE trending minimum stress (σ_3). They are associated with some extensional shearing (few normal faults and en echelon veins). Most quartz veins, however, strike approximately NW-SE and indicate a NE-SW-trending minimum stress (σ_3), compatible with a widespread NW-SE compression.

Strike-slip faults are common. Two main regimes of strike-slip faulting were identified in the field. They are illustrated in the stereonets of Figure 5. The main phase of strike-slip faulting corresponds to a σ_1 axis trending NW-SE (Fig. 5a). The associated structures are well distributed along the Lishan Fault valley. We have separated the faults into two groups: inherited and neoformed faults. The neoformed strike-slip faults (i.e., fault planes newly formed under this regime) are characterized by conjugate strike-slip patterns (with most dextral faults trending WNW-ESE and most sinistral ones trending N-S). Inherited strike-slip faults, corresponding to reactivation of pre-existing weakness planes, are also present, revealing earlier tectonic episodes and resulting in a variety of orientations (Fig. 5a). Some other strike-slip fault system (dextral along NE-SW trends and sinistral along NW-SE ones) are also present, corresponding...
polyphase tectonics of the Lishan Fault zone as well as the method used for separating fault-slip data (Fig. 6). At this site, different types and generations of structures were observed, including tensile quartz veins (Fig. 6a and b), two sets of strike-slip faults (Fig. 6c and d), reverse faults (Fig. 6e) and some normal faults (Fig. 6f). Several criteria of relative chronology, along with mechanical consistency, allowed separation into different tectonic regimes. These criteria are listed below.

First, superposed striations were found on some fault surfaces in several outcrops. For instance, at Szeyuan, they revealed that both the dip-slip normal faulting (Fig. 6f) and the dip-slip reverse faulting (Fig. 6e) are younger than the strike-slip faulting of Fig. 6d. This result did not constrain the chronology between normal faulting and reverse faulting (Figs. 6f and e, respectively), which had to be established by different means.

Second, shear reactivation of tension gashes reveals chronology. Some quartz veins (Fig. 6a) show later striations revealing strike slip (Fig. 6d) or reverse slip (Fig. 6e). Such observation indicates that both these strike-slip and reverse faulting events occurred later than the formation of tension gashes as quartz veins.

Third, crosscutting relationships between brittle structures are also direct indicators. Quartz veins (Fig. 6b) were found crosscut and offset by a reverse fault set (Fig. 6c), showing that reverse faulting occurred later than the development of tension gashes. Other examples include a strike-slip fault set (Fig. 6d) crosscut by a reverse fault set (Fig. 6e), and a strike-slip fault set (Fig. 6d) overprinted by a normal fault set (Fig. 6f).

Valuable, albeit indirect, chronological information is also provided by the distinction between newly formed faults (or veins) and inherited fault slips (or vein opening). Inherited structures result from reactivation of weakness zones (such as for older faults, fractures, veins or lithological boundaries), whereas ‘neoformed’ ones appear during a given tectonic event. In the case of newly formed brittle features, simple geometrical relationships allow identification, whereas most inherited structures show attitudes which do not fit the mechanical requirements for most efficient shear or tension.

The relation between brittle features and folding or tilting also highlights chronological relationships. They were useful along the Lishan Fault zone where folding is widespread (Fig. 3). At the site Szeyuan, some apparently reverse faults are in fact tilted strike-slip faults which have been rotated during folding, as shown by their geometrical relation to bedding. To illustrate this...
phenomenon, both the initial and present attitudes are shown in stereonets (Fig. 6c). Furthermore, these tilted strike-slip faults show a conjugate system, showing that most of them were not inherited from older events. In contrast, the other set of strike-slip faults (Fig. 6d), which does not exhibit a conjugate system, is clearly inherited (some fault surfaces are common to both these systems, with opposite senses of strike slip) and also posdates tilt. This observation highlights the consistency between the two types of indirect criteria of relative chronology.

All sources of chronological information were combined, resulting in the relationships illustrated with arrows on the right side of Figure 6. Note that double arrows indicate age relative to folding, whereas simple solid and dashed arrows indicate relative chronology at site Szeyuan and in other sites (respectively). The succession of the tectonic events was thus reconstructed as follows, from oldest to youngest (Fig. 6):

(1) A NW-SE extensional regime is revealed by a set of quartz veins (Fig. 6a) associated with few normal faults. Although we found no direct evidence that this set predated the other set of quartz veins, it probably resulted from the oldest event identified.

(2) Under a NW-SE compressional regime or a NE-SW extensional regime, many tensitional quartz veins developed (Fig. 6b). This set may reflect extension along different trends relative to the earliest one, or the first occurrence of major NW-SE compression.

(3) A NE-SW compressional regime is characterized by tilted conjugate strike-slip faults (Fig. 6c). These faults now appear as oblique reverse faults at Szeyuan because they predated folding. Although this event is not a major one, its existence is beyond doubt.

(4) A NW-SE compressional regime corresponds to numerous strike-slip faults (Fig. 6d), which are generally tilted and compatible with cylindrical folding. Many of these faults are reactivated earlier faults (Fig. 6d, compare with Fig. 6c).

(5) A NW-SE compressional regime, with a trend of σ1 axis similar to the preceding one, is represented by reverse faults which postdate folding (Fig. 6e).

(6) A late NNW-SEE extensional regime is locally represented by a few normal faults which strike E-W or ENE-WSW (Fig. 6f).

After compilation of these different sources of information, the successions of brittle events locally identified at sites can be correlated throughout large areas, based on consistency of stress regimes and corresponding compressional or extensional trends.

3.4. Permutations of principal stress axes σ2/σ3

We have reconstructed a succession of deformation events and related tectonic stress states. However, because chronological criteria are scarce for some couples of events, two cases should be considered: the occurrence of distinct tectonic stress states with incompatible, mutually oblique orientations of principal stress axes (such as for Figs. 6c and 6d), or the existence of two different stress tensors for a single event, related by simple switches between principal stress axes (such as for Figs. 6d and 6e). The former case generally indicates that distinct tectonic events have occurred (see discussions in Angelier et al., 1986 for the Foothills, and Angelier et al., 1990a for the Hsuêhsian Range). The latter case rather reveals minor tectonic episodes occurring under a main tectonic regime characterized by a single orientation of principal stress axes despite a permutation of principal stresses (σ2 and σ3 in Figs. 6d and 6e).

The major NW-SE compressional regime identified along the Lishan Fault zone is commonly characterized by systems of strike-slip faults, and at some sites by reverse fault systems. No well-defined chronological relationship was found between these two systems of faults (there are relative chronologies, but they are not consistent). A simple switch between σ2 and σ3 stress axes accounts for this change. The abundance of such σ2/σ3 permutations in the Lishan Fault region suggests that although the most common expression of the widespread NW-SE compression was strike-slip faulting, this regime could easily change to a thrust tectonic regime with reverse faulting (transpression tectonics). This is in agreement with the low values (Tab. 2) obtained for the ratio between principal stress differences, Φ = (σ2−σ3)/(σ1−σ3). Thus, the transpressional tectonic regime is highly characterized by the close value between the intermediate stress σ2 and the minimum stress σ3.

The above characteristics of the permutation between principal stresses σ2 and σ3 were recognized in other areas of the Taiwan mountain belt through local stress analyses (Angelier et al., 1986 and 1990a; Chu, 1990; Lee, 1994) as well as along the major faults (such as for the active Longitudinal Valley Fault, a site of oblique left-lateral reverse slip under a compressional tectonic stress regime with very low values of Φ: Angelier, 1984; Barrier and Angelier, 1986). This permutation of stress axes σ2 and σ3 under compressional regime is widespread for the present-day stress state in the Taiwan area, as
indicated by the analysis of earthquake focal mechanisms (Yeh et al., 1991). We infer that the stress permutation phenomenon recognized along the Lishan Fault reflects a general tectonic behaviour in the Taiwan collision belt.

3.5. Results of paleostress analysis

The results of paleostress analysis in the Lishan Fault valley, based on calculation of reduced tensors, are summarized in Table 2. Figure 7 shows the distribution of the calculated trends of σ1 axes for all compressional regimes in the study area.

First, an early development of quartz veins, associated with normal faults, indicates that extension prevailed across the Chinese continental margin, prior to compression. Although no paleostress tensor could be determined along the Lishan Fault for this early extension, this identification is consistent with many observations throughout the Taiwan mountain belt (Angelier et al., 1986 and 1990a; Lu et al., 1991) and foreland area (Angelier et al., 1990b).

The NW-SE compression is by far the major tectonic event in the study area. The σ1 axes trend N120°E on average (Fig. 7). This event is characterized not only by numerous minor faults (reverse and strike-slip) and folds (amplitudes from a few meters to tens of meters), but also by regional folds. Quartz veins are common and consistent with this NW-SE compression, despite the ambiguity mentioned above (Fig. 6b). Rather than separating reverse and strike-slip fault systems into distinct sub-events, we adopted the interpretation of multiple permutations of stress axes during a single event (see preceding section). This preference is supported by the common NW-SE trend of compression and by the absence of consistent relative chronology between the reverse and strike-slip subsets. At least the stress regimes reconstructed in Figures 6d and 6e belong to this major event. This NW-SE compression belongs to the major tectonic phase which produced the principal structures of the northern Taiwan mountain belt.

In addition to this main NW-SE compression, some N-S to NNW-SSE trends of compression have been reconstructed (see Table 2 and Fig. 7, sites NIUTO002 and TULLIN02A), indicating that the Lishan Fault behaved not only as a thrust, but also seemed to undergo an oblique compression with left-lateral strike-slip (transpressional) at some stage of its tectonic evolution. Outcrops observation of oblique thrust micro-faults in some sites also support this argument. This NNW-SSE compression is in agreement with the old compression episode prevailed in the northern Hsiuhsien Range (Angelier et al., 1990a). Evidences in the studied area, however, are scarce, and it requires more data to confirm this point.

A rather enigmatic episode of NE-SW compression is characterized by conjugate systems of reverse and strike-slip faults. It played a very limited role and corresponding structures are generally minor. However, this event was undoubtedly identified at several places in Taiwan (Angelier et al., 1990a). It may be interpreted in terms of synchronous contraction sometimes occurring perpendicular to, and consistent with, the main NW-SE compression.

A N-S to NW-SE extension characterizes the most recent episode in the study area, postdating the main compressional event. Recent N-S extension is known elsewhere in northern Taiwan (Lee and Wang, 1987; Yeh et al., 1991; Lu et al., 1995).

4. Discussion and conclusion

Our tectonic analysis of the Lishan Fault zone shows that the apparent contradictions highlighted by earlier structural studies can be explained through consideration of the polyphase history.

Based on sedimentological analysis, Teng et al. (1991) and Teng (1992) proposed a half-graben structure for the Hsiuhsien Range basin during the Oligocene; this interpretation seems valid for northern Taiwan only (Chu et al., 1995). The eastern limit of this half-graben structure would have been a major normal fault corresponding to the present Lishan Fault zone (Fig. 8a). During the opening of the South China Sea, which occurred along a N-S direction during the Oligocene and the lower Miocene, the continental margin including the Taiwan area was probably affected by extensional tectonics (Taylor and Hayes, 1980; Halloway, 1982; Suppe, 1988; Angelier et al., 1990b; Lu et al., 1991). As a result, faults similar to the Lishan Fault might have been reactivated as N-S trending transcurrent faults. Both the N-S and NW-SE trends of extension were identified according to paleostress analyses in the Taiwan Strait (Angelier et al., 1990b), and the later clockwise rotation of northeastern Taiwan (Lee et al., 1991) must be taken into additional account in these comparisons, although no paleomagnetic information is available along the Lishan Fault. Whatever the interpretation for the Oligocene-early Miocene behaviour of the main fault zone (normal dip-slip or transcurrent), it is likely that at least on the Hsiuhsien Range side many features with NE-SW general trends indicate early extension.
which trends approximately NW-SE, in general agreement with the extension which affected the Chinese continental margin during this period (Fig. 8a).

On the other hand, according to Lu and Hsü (1992), the Lishan Fault zone represents an ancient suture line of the middle Miocene collision between the Chinese continental margin and the Gutaian block (Fig. 8a). This interpretation is based principally on the analysis of the Backbone Belt formations, described as a melange within a major accretionary prism. According to this interpretation, the Lishan Fault would have existed as such only since the middle Miocene. This new reconstruction is compatible with the interpretation of the Oligocene-early Miocene extension presented above in terms of Chinese continental margin evolution, as far as the sole western side of the Lishan Fault (the Hsuehshan Range) is concerned, which is the case for the sites which reveals early extension in the present study. It however contradicts the previous interpretation regarding the Backbone Range and the Lishan Fault itself (Fig. 8a).

Second, most mechanisms of folding and faulting reconstructed along the Lishan Fault zone (Figs. 6, 7, and Table 2) belong to a major event of
(a) Paleogene to Early Miocene

Model I: Major normal fault between basement and Hsuehshan Basin forming a half graben (Teng et al., 1991)

Model II: Subduction zone between Chinese margin and basement block (Lu & Hsu, 1992)

(b) Late Miocene - Pliocene

Reverse/Strike-slip Fault (transpression)

(c) Pleistocene

Backthrust
NW-SE to WNW-ESE compression, inducing evidences for NE-SW compression are also present (Fig. 6c), but they are related to minor structures. Within the same general period of NW-SE collision, back-thrusting occurred as a late sub-event, accompanied by uplift and crustal thickening of the Hsüehshan Range, where multiple pop-up structures are present (Clark et al., 1993; Tillman and Byrne, 1995; Chu et al., 1996). During this sub-event, the east-vergent folds and flexure described before developed (Fig. 3). This transformation to back-thrusting of the Lishan Fault is considered a combination of the Quaternary rapid uplifting of the Hsüehshan Range and the continuation of the horizontal compression in the Taiwan mountain belt (Fig. 8c). The early stage of the Lishan Fault in west-vergent reverse and strike-slip fault (Fig. 8b) probably occurred with a steep inclination of the fault surface structure which has a mechanical tendency to turn to east-vergent thrusting near the surface during uplifting of the Hsüehshan Range.

Finally, as the mountain uplift was continuing, extensional tectonism with late normal faulting took place (Crespi, 1995; Angelier et al., 1995). Furthermore, late N-S extension occurred in the northern segment of the Lishan Fault (near the Ilan Plain), suggesting that its most recent mechanisms are influenced by the N-S back-arc opening of the Okinawa Trough northeast off Taiwan during the last 2 Ma (Letouzey and Kimura, 1986; Liu, 1995).

Acknowledgements

The I.F.T.-N.S.C. cooperation framework (Institut Français à Taipei and National Science Council of Taiwan) has provided support for this work. The help of the Central Geological Survey of Taiwan, the French C.R.O.U.S, the University P. & M. Curie, the Ministry of Education of Taiwan, and the National Taiwan University is gratefully acknowledged. We wish to thank Paul Gillespie and three anonymous reviewers for their critical points, thoughtful comments and careful reviews of this manuscript. This is a contribution of the Institute of Earth Sciences, Academia Sinica, ISEP 97-003.

References

