A Constellation of Microsatellites Promises to Help in a Range of Geoscience Research

An octet of microsatellites to be launched in 2003 promises to deliver a large amount of useful data for meteorological, climatic, ionospheric, and geodetic research as well as for operational weather forecasting and space weather monitoring. Known as the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), the joint Taiwan-U.S. scientific satellite project makes use of Global Positioning System (GPS) occultation and tracking signals.

COSMIC's final operational configuration is depicted in Figure 1. Each of the eight microsatellites in low-Earth-orbit (LEO, shown relative to the high-altitude GPS satellite orbits) will carry in particular an advanced limb-sounding GPS receiver, a Tiny Ionospheric Photometer, and a tri-band beacon transmitter.

Figure 2 gives an artist's conception of one spacecraft after deployment. The satellites will conduct atmospheric vertical profile soundings for meteorology, climate, and ionospheric research, using refracted GPS radio signals received by any of the microsatellites minutes before a GPS satellite gets occulted from the line-of-sight by the Earth. Attesting to the document that "one person's noise may be another person's signal," this technique of atmospheric limb sounding by radio occultation is a prime example of a technique originally developed for one application, in this case geodesy, finding fundamental applications in various other disciplines. The technique was tested in a GPS/MET experiment a few years ago, but COSMIC will be able to collect much more data of higher quality—approximately 4000 globally uniform, all-weather soundings per day. A typical daily sampling is shown in Figure 3. In addition, the routine GPS tracking of the COSMIC satellite orbits will provide new data for improving the solution of Earth's gravity field. It is anticipated that COSMIC will be followed with operational constellations currently being planned in the United States and Europe, and that COSMIC-type radio occultation soundings will become available on a routine basis in the future.

How It Came About

The COSMIC project began formally with the signing of a Taiwan-U.S. Bilateral Cooperative Agreement in December 1997. But the technique of atmospheric limb sounding by radio occultation was first developed in the 1960s and has since been used to study planetary atmospheres. Applying this technique to the Earth's atmosphere using the GPS as a source and a receiver in LEO was suggested as early as 1988 [Yunck et al., 1988], but was not tested until 1995, when a proof-of-concept, experimental satellite known as MicroLab-1 was launched into LEO [Ware et al., 1996]. Costing only $10 million, this GPS/METeorology experiment was primarily supported by the U.S. National Science Foundation and carried out by the University Corporation for Atmospheric Research (UCAR) with main instrumentation provided by NASA's Jet Propulsion Laboratory (JPL).

Fig. 1. Eight microsatellites orbiting the Earth at an altitude of 800 km (magenta) in the COSMIC Mission. The smaller circles on Earth's surface represent the radio receiving range for the COSMIC satellites. The larger circles (blue) depict 24 GPS satellites orbiting at an altitude of 20,200 km.
Fig. 2. The preliminary design of a COSMIC micro-satellite.

can then be processed and assimilated by computer forecast models that guide, for example, day-to-day weather predictions [Kuo et al., 1997]. The radio occultation sounding also measures electron density in the ionosphere, which is of great interest to ionospheric research and space weather monitoring. For a more detailed discussion of the technique and its scientific observables, see Melbourne et al. [1994].

Over a 2-year period between April 1995 through April 1997, over 62,000 radio occultation soundings have been collected by MicroLab-1. The data from the GPS/MET proof-of-concept experiment has stimulated broad international research to verify the accuracy and utility of the data [Ware et al., 1996; Kursinski et al., 1996; Leroy, 1997; Kuo et al., 1998; Hajj and Romans, 1998]. While these data compare very favorably with other data [Rocken et al., 1997; Kursinski et al., 1997], a single experimental satellite with one instrument collecting a few hundred profiles daily is far from sufficient to meet the requirements of global atmospheric research and prediction.

Thus, a conceptual design of a constellation of LEO satellites was started at UCAR to exploit the full potential of radio occultation sounding techniques, which led to the development of COSMIC.

In the Sky

COSMIC's eight microsatellites will be launched using one rocket in early 2003 into an initial orbit at 400-km altitude and an inclination of about 72°. Then different satellites will be boosted by onboard thrusters to different altitudes ranging up to 800 km. The corresponding different rate of orbit nodal precession will then gradually drift the orbit planes apart, until a more-or-less even distribution of the eight orbit planes is achieved. This will take about a year, during which time the satellites will already start collecting atmospheric soundings (although the data are not very uniformly distributed during this phase) as well as critical geodetic/gravity data. At the end of this orbit-adjusting phase all eight satellites will be raised to the same altitude of about 800 km, thus beginning the normal operation phase (Figure 1).

When stowed for launch, each microsatellite will be a cylinder 126 centimeters in diameter and 46 centimeters in depth, weighing 50 kilograms (Figure 2). The daily 4000 vertical soundings (Figure 3) cover the oceans as densely as land areas, including traditionally data-sparse oceanic and polar regions, thanks to the even distribution of COSMIC as well as GPS orbits. These radio occultation soundings are not affected by clouds, aerosol, or precipitation—an important advantage over other remote-sensing methods based on radiometric techniques. For comparison, the loci of the current operational radiosonde network are also given in Figure 3 (shown as red dots).

While it is highly desirable to have the maximum number of satellites and longest mission lifetime possible, many trade-offs in mission design and orbit scenarios are being considered to reconcile various scientific requirements and financial and logistic constraints. The COSMIC mission is designed for 2 years of operation. However, the onboard consumables are sized for 5 years. The actual lifetime of the satellites further depends on the instrument condition, orbit stability, and the condition of the spacecraft.

On the Ground

The ground segment of COSMIC will consist of a satellite operations control center in Taiwan, two Data Analysis and Archive Centers, one in Taipei, Taiwan, and one in Boulder, Colorado; and a global ground fiducial and beacon network built upon existing NASA and international networks.

In general, all the data will be made available openly and freely (or at nominal costs for reproduction and distribution) to the international scientific and operational communities. It is expected that the data will be sent to and processed by the Data Analysis and Archive Centers continuously, with data latency time

Fig. 3. A typical daily COSMIC sounding coverage (green dots, about 4000 profiles). Loci of current operational radiosonde stations (red dots) are also shown for comparison.
no more than 90 minutes for regional and global numerical weather predictions. This is particularly important because advanced (and computationally demanding) data assimilation systems are needed to make optimal use of the COSMIC data. The operational ionospheric products also require data latency to be no more than two hours, to be useful for space-weather monitoring and nowcasting. The ionospheric scintillation data will be modulated and transmitted by the tri-band beacon transmitter, and relayed to the Data Analysis and Archive Centers, allowing the monitoring of space weather with a data latency of 5 to 10 minutes.

COSMIC Measurements and Science

What exactly are the COSMIC measurements and data products that will be useful for scientific research and near real-time applications? Over 100 scientists, engineers, and instrument experts gathered at the first Taiwan U.S. Bilateral COSMIC Science Workshop held in Taipei during February 26-28, 1998, to discuss and define the COSMIC science. Four scientific working groups were formed: Meteorology, Climate, Ionosphere, and Geodesy/Gravity.

Meteorology: Water vapor and its phase changes are major drivers for weather and climate, and 90% of the water vapor resides within the bottom 3 km of the atmosphere. A fundamental problem in meteorology and weather prediction is an accurate measurement of water vapor and its distribution. The atmospheric refractivity profile derived from COSMIC observables is a function of both temperature and water vapor posing a closure problem of one equation with two unknowns. Recent studies have shown that given accurate determination of refractivity, water vapor may be calculated using an independent estimate of temperature. This calculation is relatively insensitive to small uncertainties in the temperature. For example, in the lower troposphere, water vapor pressure may be estimated to within 0.5 millibar if the temperature is known to within 2°K [Ware et al., 1996]. Alternatively, the bending angle (or refractivity) data derived from the raw COSMIC measurements may be assimilated directly into numerical models. Recent numerical experiments have shown that refractivity or bending angle assimilation can substantially improve the quality of temperature and water vapor analysis for a weather prediction model [Kuo et al., 1997; Zou et al., 1999].

An advanced version of the GPS/MET instrument for COSMIC with a higher-gain antenna and improved firmware will be built, and open-loop tracking procedure and advanced data retrieval techniques developed at JPL. It is anticipated that 90% of the soundings could reach to within 1 km above the surface, deeper than typical MicroLab-1 penetrations. Typical vertical resolution of the measurement ranges from 200 m to 1 km.

The high-vertical-resolution GPS radio occultation soundings complement the high horizontal resolution of traditional radiometric satellite soundings (such as GOES, SSM/I, and TOVS). Assimilating data from different remote sensing and traditional observing systems as well as ground-based GPS sounding data will make possible improved description of the 3-D structure of atmospheric temperature and water vapor content, leading to improved weather prediction on both global and regional scales.

Climate: One unique aspect of radio occultation sounding based on precise measurements of the radio frequency and its phase shift is the "self-calibrating" nature, as each measurement is independent of the others. Unlike the traditional satellite microwave measurements, the radio soundings have no instrument drift problem. Climate research will benefit strongly from the large amount and global coverage of the COSMIC soundings. It will establish a global climate change "thermometer" that has unprecedented long-term stability, if given a long operation period, providing a global self-calibrating data set for climate monitoring and model testing. In particular, the fact that COSMIC data require no calibration offers a unique opportunity for the climate community to study subtle climate changes at a much higher accuracy and vertical resolution than currently feasible. Specific applications include the studies of water vapor distribution, especially in the tropics; ozone depletion; troposphere/stratosphere exchange; and volcanic effects.

Ionosphere: COSMIC’s advanced GPS receiver instruments will observe the ionosphere at a temporal and spatial resolution that is unprecedented. In addition, two other ionospheric instruments will be put onboard each COSMIC satellite (cf. Figure 2): A Tiny Ionospheric Photometer and a tri-band beacon transmitter. They provide two-dimensional horizontal mapping of electron density, complementing the GPS radio occultation soundings so that three-dimensional, time-varying fields of electron density between 90 and 800 km can be inferred. Such advances should lead to better understanding of the effects of solar storms, and hence better "space-weather" monitoring and forecasting capabilities. The solar storms inject huge numbers of high-energy particles into Earth’s upper atmosphere, jeopardizing power grids and high-frequency communications on Earth as well as communication satellites in space. In addition, each of the eight micro-satellites carries a magnetometer to measure the global distribution of field-aligned electric currents and the size of auroral oval in the polar ionosphere.

Geodesy/Gravity: COSMIC will yield a great amount of continuous, uniform, and precise GPS tracking of satellite orbits. Known as the high-low satellite-satellite tracking, this technique has in the past already yielded valuable data for improved solution of Earth’s gravity field [e.g., Lemoine et al., 1998]. In the case of COSMIC, the GPS occultation signals are actually less useful for the gravity purpose as they are “contaminated” by the atmosphere. The most useful tracking data for the gravity purpose are the bulk of the routine GPS tracking of the COSMIC satellites (at no more than 1 Hertz sampling rate, as opposed to up to 100 Hertz during an occultation). Such tracking data during the operation phase (at final 800-km high orbits) can yield useful solutions of temporal variations of the low-degree gravity field, while at the same time help improve the orbit determination for GPS satellite themselves. The stronger benefit, however, comes from the initial orbit-adjusting phase when the orbits are lower in altitude and the non-gravitational drag effect largely cancels between two satellites flying in tandem during this period. Simulations have shown that using these tracking data it is possible to improve our knowledge of Earth’s low-degree gravity field by up to an order-of-magnitude [Chao et al., “COSMIC: Improving Earth’s gravity model and other geodetic applications,” in press, 1999].

Authors

Y. H. Kuo, UCAR Office of Programs, Boulder, Colo., USA; B. F. Chao, NASA Goddard Space Flight Center, Greenbelt, Md., USA; L. C. Lee, National Space Program Office, Taiwan, Republic of China

Acknowledgments

The total cost of the COSMIC Mission including the pre-launch spacecraft development, launch service, plus the first 2 years of post-launch operation is estimated to be roughly $100 million. Because of COSMIC’s scientific, technical, and educational merits, the National Science Council of Taiwan, Republic of China, has committed approximately $80 million for the project. Being Taiwan’s third space mission, COSMIC is also designated ROCSAT-3 (Republic Of China, Satellite mission #3) in Taiwan. The remaining 20% of the cost will be borne by participating U.S. agencies, primarily NSF, NASA, NOAA, Navy, and Air Force. COSMIC will be jointly implemented by UCAR and Taiwan’s National Space Program Office (NSPO), with instrument development at JPL, U.S. Naval Research Laboratory, the University of Arizona, Florida State University, and the University of Texas. In addition to the authors, the participating science team includes M. D. Cheng (Central Weather Bureau,
Taiwan), C. H. Liu, Y. B. Tsai (National Central University, Taiwan), C. Rocken (UCAR), G. Hajj, E. R. Kursinski, T. Yunck (JPL), and G. R. North (Texas A & M University). Many other scientists and engineers in Taiwan and the United States have contributed to the inception and definition of the COSMIC Mission. The Program Manager at NSPO is D. F. Chu.

To disseminate the latest information, the COSMIC project maintains a Web site at URL: http://www.cosmic.ucar.edu. For more information, contact Bill Kuo, COSMIC Project Director, UCAR Office of Programs, 3300 Mitchell Lane, Suite 370, Boulder, CO 80301 USA; E-mail: kuo@ucar.edu; or Lou Lee, Chief Scientist, NSPO, Hsin-Chu, Taiwan, ROC; E-mail: loulee@nspo.gov.tw.

References

